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Abstract. A linear form of density-dependent total nucleon-nucleon (NN) cross-section that depends on
the coordinates of the projectile and target is applied in the Glauber phase shift formula. The only free
parameter in these calculations is the density-dependent parameter “β”, which is adjusted to obtain an
agreement between the calculated angular distribution of the elastic-scattering cross-section and the cor-
responding experimental one. The elastic scattering of the 12C ion on the 12C ion target has been studied
at incident energies of 300, 360, 1016, 1441 and 2400 MeV. The total reaction cross-section “σr” is also
calculated with the obtained value of “β” for the same reactions. The obtained values of “σr” are compared
with those obtained from the optical-model analysis as well as those of the experimental value. Nuclear
transparency effects are also discussed. Generally, the density-dependent NN cross-section improves the
calculated results.

PACS. 24.10.-i Nuclear-reaction models and methods – 25.70.-z Low and intermediate energy heavy-ion
reactions

1 Introduction

The study of elastic scattering is a basic ingredient to
understand more complicated heavy-ion reactions. In the
high-energy domain one of the models used for the anal-
ysis of elastic-scattering data is the microscopic Glauber
model [1] based on the individual nucleon-nucleon colli-
sions in the overlap volume of the colliding nuclei. Many
attempts have been made to describe elastic-scattering
processes between heavy ions in terms of the so-called
optical limit to the Glauber model [2–8]. In the simple
Glauber approach to heavy-ion elastic scattering, it is as-
sumed that the flux attenuation of the elastic channel oc-
curs by means of the classical straight-line trajectory. The
scope of the Glauber model was extended to lower energies
to study the differential elastic-scattering cross-section.
This had been done by modifying the Glauber model to
account for the Coulomb distortion of the trajectory oc-
curring in case of heavy-ion scattering [4–6], the so-called
modified Glauber model I. In the modified Glauber model
I , the overlap integral of nuclear densities has been calcu-
lated along a trajectory characterized by the distance of
closest approach.
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The Coulomb modified Glauber model is developed to
explain the new phenomena of the reaction cross-section
(σr) by considering the relation between the surface dif-
fuseness of the neutron distribution and the neutron sep-
aration energy of the nuclei [9]. In this model, the free-
space nucleon-nucleon cross-section σfreeNN obtained by ex-
perimental measurements is used. But, because of the ef-
fects of Pauli blocking and finite nuclear matter density in
heavy-ion reactions, the real in-medium nucleon-nucleon
cross-section σin-medium

NN is different from the free nucleon-
nucleon cross-section. As a result of Pauli suppression in
the intermediate states, the in-medium nucleon-nucleon
cross-section should have some density dependence and
becomes smaller than in free space, especially in the low-
and intermediate-energy regions [10]. The Pauli-blocking
and Fermi-motion effects have been introduced via the lo-
cal density approximation [11].
Many groups [12–15] have studied the medium effect

of the nucleon-nucleon cross-section. As an attempt, Cai
Xiangzhou et al. [16] proposed a new phenomenological
formula for the in-medium NN cross-section. Ghazal [17],
using the formula suggested by Cai Xiangzhou, studied
the effect of the in-medium NN cross-section on the elastic
scattering of heavy-ion reactions. Also, using this formula,
Nour El-Din [18] calculated the total-reaction nucleus-
nucleus cross-section according to Charagi approach [6],
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and no good agreement has been found for some reac-
tions. The role of nuclear surface in the formation of the
total-reaction cross-section is investigated by Lukyanov et
al. [19]. Other approaches are introduced to take into ac-
count the in-medium effect [20]. A Taylor expansion of the
in-medium cross-section in the density variable is intro-
duced by Kalkow et al. [14]. A more recent approach, by
Bertulani [21], obtained the lowest-order correction of the
density dependence of in-medium NN cross-section from
geometrical considerations of the Pauli-blocking effects.
In the present work, a microscopic approach that starts

from the optical limit of the Glauber scattering theory and
incorporates an approximate treatment of Pauli-blocking
and Fermi-motion effects is introduced. It consists in re-
placing the total NN cross-section by a linear form (sim-
ilar to that of Kalkow [14]) of the density-dependent NN
cross-section that depends on the coordinates of the pro-
jectile and target through the exact position of the two
interacting nuclei inside an integral defining the overlap
densities of the colliding nuclei. These calculations allow
one to describe the cross-section in terms of an elementary
NN scattering process occurring inside the overlap of the
densities of the colliding nuclei. In such a model, the only
ingredients are the NN amplitude at 0◦ and the nuclear
density. The formalism is introduced in sect. 2. Section 3
is devoted to the discussion of the obtained results.

2 Formalism

The nucleus-nucleus differential cross-section is given by

dσ
dΩ

= |f(θ)|2 , (1)

for different spinless nuclei, or

dσ
dΩ

= |f(θ) + f(π − θ)|2 , (2)

for identical spinless nuclei, with the usual expression for
the scattering amplitude f(θ) for charged particles:

f(θ) = fc(θ) +
1
2ik

∞∑
l=0

(2l + 1)

× exp(2iσl) (Sl − 1)Pl(cos θ) , (3)

where k is the wave number, fc(θ) is the usual Coulomb
scattering amplitude [22], σl is the Coulomb phase shift
and

Sl = exp(2iδl) (4)

is the scattering matrix. In terms of the so-called optical
limit to the Glauber model [2,14] the nuclear phase shift
δl is written in the form

δl =
π

kNN
Ωl fNN(0) , (5)

where kNN is the NN wave number and Ωl is the over-
lap integral of the nuclear densities along the straight line

Table 1. The nuclear density parameters of 12C according to
Chauvin et al. [2] and Charagi et al. [6].

12C ρi(0) ai

(fm−3) (fm)

Chauvin [2] 0.2974 1.935
Charagi [6] 0.3540 1.863

characterized by the impact parameter b = (l+1/2)
k and is

given by [23]

Ω(b) =
∫
d2bP

∞∫
−∞

dzP
∫
d2bT

∞∫
−∞

dzT

×ρP(�bP, zP)ρT(�bT, zT)f(�bT − (�b−�bP)) , (6)

where ρi(r) is assumed to be of a Gaussian shape for
the nuclear-matter density distribution for both the target
and the projectile,

ρi(ri) = ρi(0) exp
[
−b

2
i + z

2
i

a2i

]
, (7)

where i stands for P, T (projectile and target). The nu-
clear density parameters for 12C, ρi(0) and ai are taken
from Chauvin et al. [2] as well as from Charagi et al. [6]
and are listed in table 1. The density parameters accord-
ing to Chauvin et al. [2] (Chauvin’s parameters) are based
on the r.m.s. radius of 12C (2.37 fm) from electron scatter-
ing data [24], while those of Charagi et al. [6] (Charagi’s
parameters) are based on the adjustment of the exper-
imentally determined surface texture (by matching the
Gaussian profile with the profile calculated using the two-
parameters Fermi distribution in the surface).
For the nucleon-nucleon range function f(b), we also

use the Gaussian form [23]:

f(b) =
1
πr20

exp
(
− b2/r20

)
, (8)

where r0 is the range parameter related to the slope of the
nucleon-nucleon differential cross-section. The NN scatter-
ing amplitude (fNN(0◦)) at θ = 0◦ is given by

fNN(0) =
1
4π
kNNσ̄NN(αNN + i) , (9)

and the average NN cross-section σ̄NN, averaged over neu-
tron and proton numbers, is given by [6]

σ̄NN(E) =
NPNTσnn + ZPZTσpp + (NPZT +NTZP)σnp

APAT
,

(10)
where AP, AT, ZP, ZT, NP and NT are the projectile and
target masses, charges and neutron numbers, respectively.
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In view of eqs. (5)-(10), the nuclear phase shift δl can
be written as

δ(b) =
σ̄NN
4
(αNN + i)

∫
d2bP

∞∫
−∞

dzP
∫
d2bT

×
∞∫

−∞
dzTρP(�bP, zP)ρT(�bT, zT)f(�bT − (�b−�bP)) .

(11)

In our approach, we replace σ̄NN in eq. (11) by the
following linear density-dependent form of the NN total
cross-section:

σ̄NN[1− β(ρP(�bp, zP) + ρT(�bT, zT))] . (12)

A similar form is introduced in the calculation of the
folding model optical potential when using a density-
dependent effective NN interaction [17]. In this case
eq. (11) can be written as

δ(b) = δ0(b)− β[δ1(b) + δ2(b)] , (13)

where

δ0(b) =
σ̄NN
4
(αNN + i)

∫
d2bP

∞∫
−∞

dzP
∫
d2bT

×
∞∫

−∞
dzTρP(�bP, zP)ρT(�bT, zT)f(�bT − (�b−�bP)) , (14)

δ1(b) =
σ̄NN
4
(αNN + i)

∫
d2bP

∞∫
−∞

dzP
∫
d2bT

×
∞∫

−∞
dzTρ2P(�bP, zP)ρT(�bT, zT)f(�bT − (�b−�bP)) , (15)

and

δ2(b) =
σ̄NN
4
(αNN + i)

∫
d2bP

∞∫
−∞

dzP
∫
d2bT

×
∞∫

−∞
dzTρP(�bP, zP)ρ2T(�bT, zT)f(�bT − (�b−�bP)) . (16)

Performing these integrations over bP, zP and bT, zT
using (7) and (8), one gets

δ0(b) =
σ̄NNρP(0)ρT(0)a3Pa

3
Tπ

2

40(a2P + a
2
T + r

2
0)

×(αNN + i) exp
[−b2/(a2P + a2T + r20)] , (17)

δ1(b) =
σ̄NNρ

2
P(0)ρT(0)a

3
Pa

3
Tπ

2

40(a2P + 2a
2
T + r

2
0)
√
2

×(αNN + i) exp
[−2b2/(a2P + 2a2T + r20)] , (18)

and

δ2(b) =
σ̄NNρP(0)ρ2T(0)a

3
Pa

3
Tπ

2

40(2a2P + a
2
T + r

2
0)
√
2

×(αNN + i) exp
[−2b2/(2a2P + a2T + r20)] . (19)

Assuming the deviation of the projectile trajectories
due to the Coulomb field, the overlap integral of the nu-
clear densities is evaluated in terms of the distance of clos-
est approach b′(D) given by

D = b′ =
1
k

[
η +

(
η2 + b2k2

) 1
2
]
, (20)

instead of the impact parameter b, as suggested in refs. [4,
7,22]. η is the Sommerfeld parameter given by

η = Z1Z2e2
/
�v , (21)

where v is the relative velocity between the target and the
projectile.
In the framework of Glauber theory, the nucleus-

nucleus reaction cross-section can be written as [6]

σr(mb) = 20π
∫
bdb[1− exp(−χ(b))] , (22)

where
χ(b) = 4 Im δ(b) , (23)

and “Im δ(b)” is the imaginary part of the nuclear phase
shift given by eq. (13).

3 Results and discussion

The elastic scattering of 12C-12C is studied at incident en-
ergies of 300, 360, 1016, 1441 and 2400 MeV. Calculations
have been done in the framework of the optical limit of the
Glauber scattering theory. A microscopic approach, that
incorporates the density-dependent NN cross-section by a
linear form that depends on the coordinates of the projec-
tile and the target nuclei as an approximate treatment of
the Pauli-blocking and Fermi-motion effects (eq. (12)), is
used. The nuclear density of 12C is taken to be of Gaussian
form given by eq. (7). The density parameters are listed in
table 1. Using Chauvin’s parameters, it is found that the
calculated angular distribution of the elastic-scattering
cross-section is better than that using Charagi’s parame-
ters in comparison with the experimental data. This could
be seen in fig. 1. So we perform our calculations using
Chauvin’s density parameters. The calculations adopt the
classical Coulomb trajectory given by eq. (20).
Figures 2-11 show the ratio of the calculated angular

distribution to the Rutherford theoretical cross-sections
(σ/σR) displayed as a function of the C.M. scattering an-
gle. In these figures, calculations have been done for both
the density-independent (β = 0) and density-dependent
(β �= 0) total NN cross-section. The density-dependent
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Fig. 1. a) Comparison between the use of Chauvin’s nuclear-
density parameters and the use of Charagi’s parameters in the
calculations of σ/σR for 12C-12C at 300 MeV (zero range and
β = 0). b) The same as a) but for 12C-12C at 1016 MeV.

Fig. 2. The ratio of the calculated angular distribution to
the Rutherford theoretical cross-sections (σ/σR) displayed as
a function of the C.M. scattering angle for 12C-12C at 300 MeV
(zero range).

parameter β is adjusted to fit the experimental data. The
chi-square test defined by

χ2 =
1
N

N∑
i=1

(
σtheor.i − σexpi

∆σexpi

)2

, (24)

is calculated for each incident energy and the density-
dependent calculations have been done for the minimum

Fig. 3. The same as fig. 2 but for finite-range calculations.

Fig. 4. The same as fig. 2 but for 12C-12C at 360 MeV.

Fig. 5. The same as fig. 4 but for finite-range calculations.
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Fig. 6. The same as fig. 2 but for 12C-12C at 1016 MeV.

Fig. 7. The same as fig. 6 but for finite-range calculations.

Fig. 8. The same as fig. 2 but for 12C-12C at 1441 MeV (zero
range).

Fig. 9. The same as fig. 8 but for finite-range calculations.

Fig. 10. The same as fig. 2 but for 12C-12C 2400 MeV (zero
range).

Fig. 11. The same as fig. 10 but for finite-range calculations.

value of (χ2/N), that determines the best value of the
density-dependent parameter β. Using these values of β,
the total-reaction cross-section σr (for each incident en-
ergy) is also calculated and compared with either the ex-
perimental value or with that obtained from optical-model
analysis given by others [2,25] or both. The results are
tabulated in table 2.



226 The European Physical Journal A

Table 2. The parameters of the 12C-12C heavy-ion system. The values of the range parameter “r0” and that of “αNN” are
taken from ref. [26]. The experimental value of “σr” are taken from ref. [25] while those given in the ordinary brackets are taken
from refs. [2,25]. “β” is the density-dependent parameter. R1/2 is the strong-absorption radius calculated from figs. 12-15.

Elab r0 [26] αNN β χ2/N σr(exp.) σr(calc.) R1/2

(MeV) (fm) [26] (fm3) (mb) (mb) (fm)

0.0 0.0 2.99 (1300)(a) 1182 6.05
300 0.85 1.2 2.76 [2] 1169 6.00

1.285 0.0 0.30 1403 6.58
0.15 0.27 1397 6.50

0.0 0.0 0.84 1315± 40 1151 5.95

360 0.87 0.1 0.84 (1260)(a) 1150 5.90
1.171 0.0 0.504 [2] 1328 6.37

0.05 0.500 1327 6.33

0.0 0.0 5.39 960± 25 938 5.46

1016 1.0 1.65 0.94 (1000)(a) 905 5.37
0.697 0.0 3.31 [2] 985 5.60

1.4 0.76 953 5.48

0.0 0.0 44.34 907± 50 869 5.22

1441 1.245 2.3 0.57 (907)(a) 812 5.05
1.516 0.0 5.33 [25] 1060 5.74

1.3 0.21 1008 5.60

0.0 0.0 245.3 864± 45 804 4.98

2400 0.93 2.0 2.22 (806± 30)(a) 749 4.80
1.575 0.0 8.57 [25] 986 5.49

0.8 2.11 952 5.38

(a) The values of σr (exp.) that are given in ordinary brackets are obtained from O.M. analysis.

Fig. 12. Transparency as a function of the distance of closest
approach assuming the classical Coulomb trajectory for 12C-
12C at different incident energies with zero range without in-
medium effects (β = 0).

The transmission function (Tl = 1− |Sl|2) [25], is also
calculated and displayed in figs. 12-15 as a function of
the distance of closest approach, assuming the classical
Coulomb trajectory defined by eq. (20). From these fig-
ures, the strong-absorption radius R1/2is deduced for each
incident energy and each corresponding value of β. The re-
sults are also listed in table 2. Figures 16, 17 below also
show the behavior of the calculated σr(Elab) as a function
of the incident energy compared with the experimental

Fig. 13. The same as fig. 12 but with in-medium effects.

data. All the above-mentioned calculations have been car-
ried out using both the zero range and finite range with the
NN range function of Gaussian type given by eq. (8). The
values of the range parameter r0 are listed in table 2 [26].

3.1 Elastic scattering

For 12C-12C at 300 MeV (zero range), fig. 2 shows that
calculation of σ/σR for β = 1.2 fm3 (χ2/N = 2.7) gives a
better fit to the experimental data than that with β = 0
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Fig. 14. The same as fig. 12 but for finite range (β = 0).

Fig. 15. The same as fig. 13 but for finite range.

(χ2/N = 2.9). As for the finite range, fig. 3 shows the
calculation of σ/σR for β = 0 (χ2/N = 0.3) and for β =
0.15 fm3 (χ2/N = 0.27). There is no appreciable effect
due to the use of medium effect in this case as can be seen
from this figure.
At 360 MeV, the zero-range calculation of σ/σR for

β = 0, (χ2/N = 0.84) is in good agreement with the
experimental data as shown in fig. 4, and for this energy
there is no need to use the density dependence. As for
finite range, calculation either with β = 0 or β = 0.05 fm3

does not improve the results of σ/σR in comparison with
the experimental data as shown in fig. 5.
At 1016 MeV (zero range), fig. 6 shows that the intro-

duction of the medium effects improves the results of the
angular distribution of the elastic-scattering cross-section
(σ/σR) for β = 1.65 fm3 in comparison with the exper-
imental data. As for the finite-range calculations (fig. 7)
the result of σ/σR with β = 1.4 fm3 is better than that
with β = 0 compared with the experimental data.
The zero-range calculation at 1441 MeV with density

dependence (β = 2.3 fm3) leads to an improvement of
σ/σR, especially at large scattering angles, compared with
the experimental data as could be seen from fig. 8. As for
the finite-range calculation, a better fit of σ/σR with β =
1.3 fm3 than that with β = 0 is obtained in comparison

Fig. 16. Reaction cross-section of 12C-12C (zero range). Trian-
gles represent calculations without in-medium effects; crosses
with in-medium effects and black circles with bars are the ex-
perimental data [2,25].

Fig. 17. The same as fig. 16 but for finite-range calculations
but the calculations without in-medium effects are represented
by diamonds.

with the experimental data as shown in fig. 9. Here, one
notices that the calculations with finite range weaken the
medium effects when the density-dependent parameter β
is less by 1 fm3 than those with zero range.
The zero-range calculation of σ/σR at 2400 MeV with

β = 2 fm3 gives a better fit to the experimental data than
that with β = 0, especially at large scattering angles, as
shown in fig. 10. For finite range, the calculation of σ/σR is
improved by introducing the medium effects (β = 0.8 fm3)
and a good fit to the experimental data is obtained as
shown in fig. 11.
In general, the values of χ2 for elastic scattering does

not show appreciable change for Elab = 300 and 360 MeV
with introducing “β”. However, a noticeable change is
found for Elab � 1016 MeV with introducing in-medium
effect.

3.2 Energy dependence of the absorption

Figures 12-15 show the distribution of the transmission
coefficient, Tl as a function of the internuclear distance of
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closest approach assuming the classical Coulomb trajec-
tory; D associated with the partial-wave angular momen-
tum l. Tl must be considered as a qualitative picture of
absorption of the reactions considered. The Tl distribution
can be used to define the strong-absorption radius R1/2, a
quantity that characterizes the system with respect to the
strong absorption. R1/2 is the distance of closest approach
of the Coulomb trajectory associated with the partial wave
l1/2 for which Tl = 1/2; i.e. the distance where the inci-
dent particle has the same probability to be absorbed as to
be reflected. For internuclear distances smaller than R1/2

the absorption dominates, whereas for values larger than
R1/2 partial waves are mostly reflected in the elastic chan-
nel [25]. From these figures, the strong-absorption radius
R1/2 is deduced and the obtained values are listed in ta-
ble 2. It could be seen that the transmission coefficient
decreases as the incident energy increases. Accordingly,
R1/2 decreases with increasing incident energy as can be
seen from the figures as well as from table 2. This weak-
ening of absorption allows the colliding nuclei to inter-
penetrate deeper without being absorbed [25]. The effect
of introducing the density dependence is to decrease the
transmission coefficient and hence R1/2 as is shown in the
figures and table 2, which agrees with the fact that only
the surface partial waves contribute nontrivially to the
nuclear scattering [22].

3.3 Reaction cross-section

The calculated values of σr for each incident energy and
the corresponding value of the density-dependent param-
eter β as well as the experimental values [2,25] are listed
in table 2. In this table the values of σr between brackets
are obtained from the optical-model analysis [2,25]. From
this table we notice that the calculated values of σr are
less for β �= 0 than those with β = 0. This means that
medium effects lead to decreasing σr values.
For 12C-12C at 300 MeV, although in case of finite-

range calculations with medium effect of the elastic scat-
tering σr has no appreciable change, the reaction cross-
section is slightly improved (1397 mb) in comparison with
that obtained by optical-model analysis (1300 mb) [2].
The calculated values of the reaction cross-section σr

at 360 MeV with zero range either with β = 0 or β =
0.1 fm3 are smaller than the experimental value (1315 ±
40 mb). The finite-range calculations lead to closer values
(1328 mb for β = 0 and 1327 mb for β = 0.05 fm3) with
the experimental one.
For zero-range calculations, the obtained value of σr at

1016 MeV with β = 0 (938 mb) is better than that with
β = 1.65 fm3 (905 mb) in comparison with the experimen-
tal value (960±25 mb). As for finite range, the calculated
values of σr with either β = 0 or β = 1.4 fm3 are in the
range of the experimental value. The effect of introducing
the density dependence stands for decreasing the value of
σr, but still within the range of the experimental value as
could be seen from table 2.
At 1441 MeV and 2400 MeV, although the zero-range

calculations of the reaction cross-section σr are less than

the experimental value, the finite-range calculations ex-
ceed the experimental value as could be seen in table 2.
The general behavior of σr (Elab) is governed by

the total NN cross-section σ̄NN through the covered en-
ergy range. This could be seen from figs. 16-17 for zero-
range and finite-range calculations either with or without
medium effects compared with the experimental values.
Also, these figures show that although the calculated val-
ues of σr is either lower or greater than the experimental
values, they exhibit the same behavior as a function of the
incident energy.

4 Conclusion

The Pauli-blocking and Fermi-motion effects play an im-
portant role in the nucleus-nucleus elastic scattering. The
simple version that treats these medium effects of the
density-dependent total NN cross-section adopted in this
work shows that the calculations are sensitive to the value
of the density-dependent parameter β. It plays an impor-
tant role in improving the elastic-scattering cross-section,
σ/σR, especially for energies greater than 30 MeV/A for
the considered reaction. Although the obtained values of
the reaction cross-section “σr“ are reduced as the over-
lap of the two nuclear densities is larger, i.e. for smaller
internuclear distances, σr(Elab) still exhibits the same be-
havior, as a function of the incident energy, as the ex-
perimental data. Generally, the value of the parameter β
for finite-range calculations is smaller than that of zero-
range calculations. This means that finite-range calcula-
tions weaken the dependence on the in-medium effect.
This simple approach should be tested for other reac-

tions such as 16O-12C,16O-24Si,. . . , etc. for different inci-
dent energies and this is what we intend to do.
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